Method for Determining Appropriate Clustering Criteria of Location-Sensing Data
نویسندگان
چکیده
Large quantities of location-sensing data are generated from location-based social network services. These data are provided as point properties with location coordinates acquired from a global positioning system or Wi-Fi signal. To show the point data on multi-scale map services, the data should be represented by clusters following a grid-based clustering method, in which an appropriate grid size should be determined. Currently, there are no criteria for determining the proper grid size, and the modifiable areal unit problem has been formulated for the purpose of addressing this issue. The method proposed in this paper is applies a hexagonal grid to geotagged Twitter point data, considering the grid size in terms of both quantity and quality to minimize the limitations associated with the modifiable areal unit problem. Quantitatively, we reduced the original Twitter point data by an appropriate amount using Töpfer’s radical law. Qualitatively, we maintained the original distribution characteristics using Moran’s I. Finally, we determined the appropriate sizes of clusters from zoom levels 9–13 by analyzing the distribution of data on the graphs. Based on the visualized clustering results, we confirm that the original distribution pattern is effectively maintained using the proposed method.
منابع مشابه
DETERMINATION OF SENSOR LOCATIONS FOR MONITORING OF ORCHARDS PARAMETERS USING REMOTE SENSING AND GIS
Optimal management of the farm and increasing production efficiency can be achieved by collecting accurate and appropriate information from the fields. The aim of this study is to determine the location of soil moisture sensors in pistachio orchards. For this purpose, initial information was obtained using satellite image processing. Then, using clustering method the information was clustered t...
متن کاملA hybrid DEA-based K-means and invasive weed optimization for facility location problem
In this paper, instead of the classical approach to the multi-criteria location selection problem, a new approach was presented based on selecting a portfolio of locations. First, the indices affecting the selection of maintenance stations were collected. The K-means model was used for clustering the maintenance stations. The optimal number of clusters was calculated through the Silhou...
متن کاملبررسی مشکلات الگوریتم خوشه بندی DBSCAN و مروری بر بهبودهای ارائهشده برای آن
Clustering is an important knowledge discovery technique in the database. Density-based clustering algorithms are one of the main methods for clustering in data mining. These algorithms have some special features including being independent from the shape of the clusters, highly understandable and ease of use. DBSCAN is a base algorithm for density-based clustering algorithms. DBSCAN is able to...
متن کاملAn integrated heuristic method based on piecewise regression and cluster analysis for fluctuation data (A case study on health-care: Psoriasis patients)
Trend forecasting and proper understanding of the future changes is necessary for planning in health-care area.One of the problems of analytic methods is determination of the number and location of the breakpoints, especially for fluctuation data. In this area, few researches are published when number and location of the nodes are not specified.In this paper, a clustering-based method is develo...
متن کاملThe Applying ISM/FANP Approach for Appropriate Location Selection of Health Centers
The main purpose of this paper is to present a fuzzy multi-criteria decision making (FMADM) model for appropriate location selection of a health center. Therefore, we identify sixteen criteria and sub-criteria for selecting a health center location. These criteria and sub-criteria have been obtained from literature reviews and practical interviews. This paper proposes a method which combines th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 5 شماره
صفحات -
تاریخ انتشار 2016